CFB-801 产品规格书

NB-IoT 系列 版本: V0.3

CFB-801_产品规格书

日期: 2020-07-15

文档更新历史

更新记录:

版本	日期	更改内容	备注
0.1	2019-07-16	初始版本	
0.2	2019-10-28	增加 GPIO 数量	
0.3	2020-07-15	修改 16, 17, 32 脚为 AGPIO	

目录

1 综述	4
2 模组介绍	4
2.1. 主要性能	4
2.2. 功能框图	4
3 应用接口	6
3.1. 引脚分配	6
3.2. 引脚描述	7
4.0.射频参数	8
工作频率	8
RF 射频指标	8
5 电气性能和可靠性	8
5.1. 绝对最大值	8
5.2. 工作温度	9
5.3. 模块工作电流	9
6 机械尺寸	9
6.1. 模块机械尺寸	9
6.2. 模块 PCB 尺寸	10
7 存储、生产和包装	12
7.1. 存储	12
7.2. 生产焊接	13
7.2 句法	1./

1 综述

CFB-801 是一款符合 NB-IoT 标准通信模块,频率范围 617-960MHz,1710-2200MHz,初始支持 Band 1、3、5、8、20、28 频段。它主要应用于低功耗的数据传输业务,符合 NB-IoT 无线电通信协议(3GPP Release-14)标准,CFB-801 符合中国电信(中国电信物联网模块需求白皮书-NB-IoT 模块硬件规格分册(2017.V1)标准要求。

CFB-801 模块可与众多终端设备进行连接,内嵌 TCP/UDP/CoAP/MQTT/HTTP (S) /LWM2M 等数据传输协议,支持 3GPP Rel14 及扩展的 AT 命令。支持基站定位。几乎能满足所有物联网方面的应用需求。例如:智能计量、共享单车、智能停车、智慧城市、安防、资产追踪、智能家电、农业和环境监测等。

CFB-801 采用 LCC 贴片封装, 并具有 20mm×16mm×2.2mm 的超小尺寸。

CFB-801 模块采用了省电技术、电流功耗在省电模式(PSM)下、小于 0.8uA。

2 模组介绍

2.1. 主要性能

下表详细描述了CFB-801 模块的主要性能。

特性	说明		
供电	VBAT 供电电压范围: 2.2V-4.3V 典型供电电压: 3.6V		
省电	PSM 下最大耗流:0.8uA		
频段	Band 1、3、5、8、20、28		
发射功率	23dBm±2dB		
温度范围	正常工作温度: -35°C~+75°C * ₁ 扩展工作温度: -40°C~-+85°C * ₂		
USIM 卡接口	支持 USIM 卡: 3V		
天线接口特征阻抗	50 欧姆		
串口	主串口:AT 命令传输或数据传输,波特率 115200bps		
物理特征	尺寸: 长 20 ±0.2 mm,宽 16 ±0.2 mm,厚 2.2 ±0.2 mm 重量: 1.6g		
固件升级	主串口		

备注:

- *1表示当前模块工作在此温度范围时,模块相关性能满足 3GPP 标准要求。
- *2 表示当前模块工作在此温度范围时,模块可以保持正常工作状态,具备短信、数据传输等功能,不会出现不可恢复的故障、射频频谱,网络基本不受影响。仅个别指标如输出功率等参数可能会超出 3GPP 标准,当温度返回正常工作范围时,模块各项指标仍符合 3GPP 标准。

2.2. 功能框图

下图为CFB-801 功能框图, 阐述了其主要功能:

- 射频部分
- 电源管理
- 外围接口

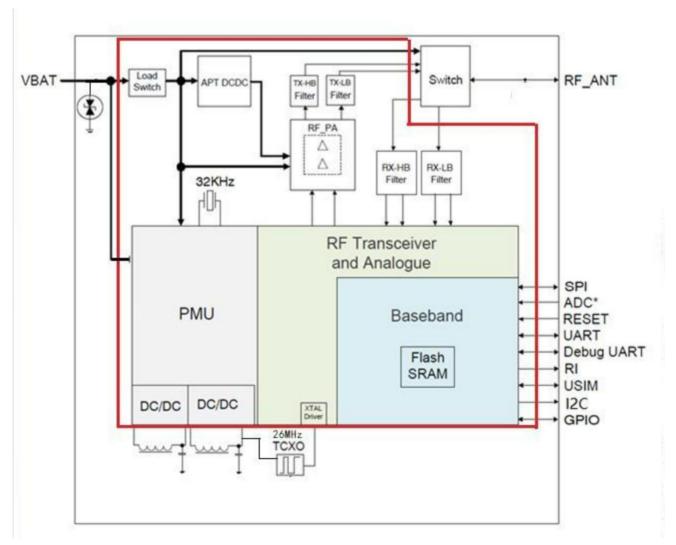


图 1: 功能框图

3 应用接口

CFB-801 模块共有 46 个引脚。下面详细阐述了模块各组接口的功能:

3.1. 引脚分配

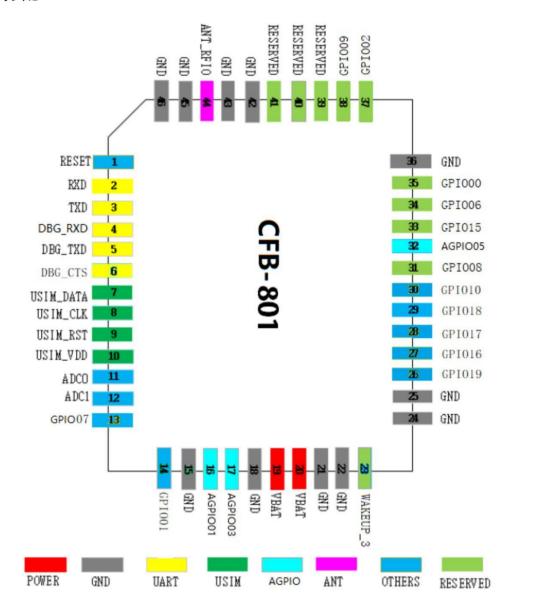


图 2 引脚功能图

3.2. 引脚描述

引脚名	引脚号	I/O 类型	描述	DC 特性	备注
VBAT	19 _, 20	PI	模块供电: VBAT=2.2V~4.3V	标准电压 3.6V 最大电压 4.3V 最小电压 2.2V	输入电源需能提供 500mA 电流
GND	15,18,21,22,24,25,36, 42,43,45,46	地			
RESET	1	DI	模块复位信号输入	最大低电平 0.6V	内部上拉,低电平 有效
RXD	2	DI	模块主数据接收	接口电压 3.3V	
TXD	3	DO	模块主数据发送	接口电压 3.3V	
GPIO01	14	I/O	通用控制接口 烧录程序时需要控制	接口电压 3.3V	建议接按键
GPIO	26,27,28,29,30,31,33 34,35,37,38	I/O	通用控制接口	接口电压 3.3V	不用可以悬空
DBG_RXD	4	DI	模块调试数据接收	接口电压 3.3V	不用可以悬空
DBG_TXD	5	DO	模块调试数据发送	接口电压 3.3V	不用可以悬空
DBG_CTS	6	DO	模块调试数据 CTS		
RF_ANT	44	I/O	射频天线接口	50	
SIM_DATA	7	I/O	SIM 卡数据信号	欧姆阻抗	
SIM_CLK	8	DO	SIM 卡时钟信号		
SIM_RST	9	DO	SIM 卡复位信号		
SIM_VCC	10	PO	SIM 卡 VCC 供电		
AIO0	11	Al	ADC 输入	电压输入范围 OV 到 VBAT	不用可以悬空
AIO1	12	Al	ADC/DAC 输入输出	电压输入范围 0V 到 VBAT	不用可以悬空
RI*	13	DO	模块输出振铃提示	接口电压 3.3V	不用可以悬空
WAKEUP	23,	DI	模块唤醒输入	接口电压 3.3V	
AGPIO05	32	I/O	通用接口(休眠可保 持)		
AGPIO01	16	I/O	通用接口(休眠可保 持)	接口电压 3.3V	不用可以悬空
AGPIO03	17	I/O	通用接口(休眠可保 持)	接口电压 3.3V	不用可以悬空
RESERVED	39,40,41				
"*" 表示功能	还在开发中				

4.0.射频参数

工作频率

表 15: 模块工作频率					
频率	接收频率	发射频率			
Band 5	865~894MHz	824~849MHz			
Band 8	925~960MHz	880~915MHz			
Band 1	2110~2170MHz	1920~1980MHz			
Band 3	1805-1880MHz	1710-1785MHz			
Band 20	791-821MHz	832MHz-862MHz			
Band 28	758-803MHz	703MHz-748MHz			

RF 射频指标

发射输出功率

所有工作频段的发射功率最大值 23dBm±2dB,最小值<-40dBm

RF 接收灵敏度

在 RF 传导灵敏度(Throughput ≥ 95%) 所有工作频段灵敏度优于-109dBm,在重传模式下灵敏度在-129dBm

该设计符合 3GPP Rel-14 中的 NB-IoT 协议。

5 电气性能和可靠性

5.1. 绝对最大值

下表所示是模块数字和模拟引脚的电源供电电压电流最大耐受值。

表 18: 绝对最大值						
参数	最小值	最大值	单位			
VBAT	-0.3	+4.25	V			
电源供电电流	0	0.3	Α			
数字引脚处电压	-0.3	+3.3	V			
模拟引脚处电压	-0.3	+4.25	V			
关机模式下数字/模拟引脚处电压	-0.25	+0.25	V			

5.2. 丁作温度

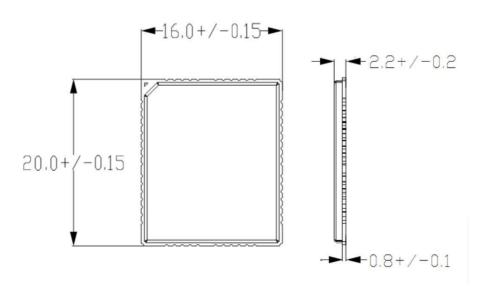
下表所示为模块工作温度范围。

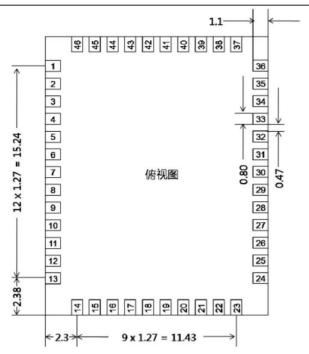
表 19: 工作温度范围					
参数	最小	典型	最大	单位	
正常工作温度范围1)	-30	+25	+75	°C	
扩展温度范围²)	-40		+85	°C	

备注:

- 1. 1) 表示当模块工作在此温度范围时,模块的相关性能满足 3GPP标准要求。
- 2. ²⁾ 表示当模块工作在此温度范围时,模块仍能保持正常工作状态,具备短信、数据传输等功能,不会出现不可恢复的故障;射频频谱、网络基本不受影响,仅个别指标如输出功率等参数的值可能会超出 3GPP 标准的范围。当温度返回至正常工作温度范围时,模块的各项指标仍符合3GPP 标准。

5.3. 模块工作电流


模块工作电流值如下表所示。


表 20: 模块耗流

参数	模式	描述	最小值	典型值	最大值	单位
Ivbat	PSM	睡眠状态		0.8		uA
	Idle	空闲状态		110		uA
	Active	射频发射状态		200		mA
		(23dBm)				
		射频接收状态		10		mA

6 机械尺寸

6.1. 模块机械尺寸

俯视、侧视及顶部尺寸图(单位:毫米)(TOP视图)

6.2. 模块 PCB 尺寸

每个焊点尺寸为宽 0.80mm、长 2.0mm、焊点间距为 1.3mm

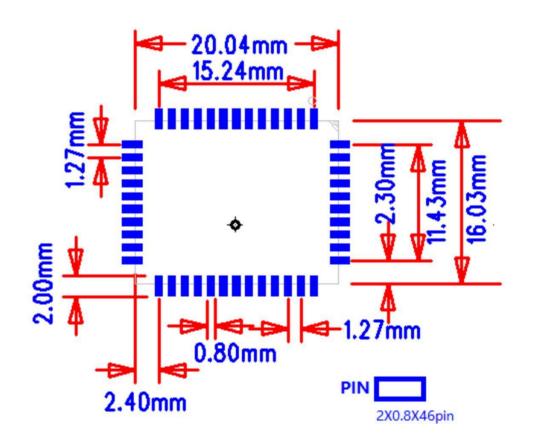


图 23: 推荐 PCB 封装尺寸图 (单位: 毫米) (TOP 视图)

备注

- 1. 为保证模块能够正常安装,PCB 板上模块和其他元器件之间至少保持 3mm 距离。
- 2. 所有的保留引脚不能连接到地。
- 3. 所有尺寸单位都是毫米。

7 存储、生产和包装

7.1. 存储

CFB-801 以真空密封袋的形式出货。模块的存储需遵循如下条件:

- 1. 环境温度低于40 摄氏度、空气湿度小于90%(RH)的情况下、模块可在真空密封袋中存放12 个月。
- 2. 当真空密封袋打开后,若满足以下条件,模块可直接进行回流焊或其它高温流程:

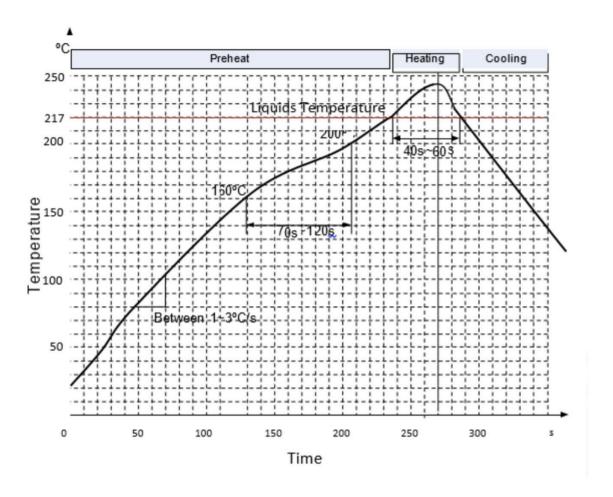
模块存储空气湿度小于10%。 模块环境温度低于30 摄氏度,空气湿度小于60%,工厂在72 小时以内完成贴片。

3. 若模块处于如下条件,需要在贴片前进行烘烤:

当环境温度为23 摄氏度(允许上下5 摄氏度的波动)时,湿度指示卡显示湿度大于10%。 当真空密封袋打开后,模块环境温度低于30 摄氏度,空气湿度小于60%,但工厂未能在72 小时以内完成贴片。

当真空密封袋打开后、模块存储空气湿度大于10%。

4. 如果模块需要烘烤,请在125 摄氏度下(允许上下5 摄氏度的波动)烘烤8 小时,烘烤累计时间小于96 小时。

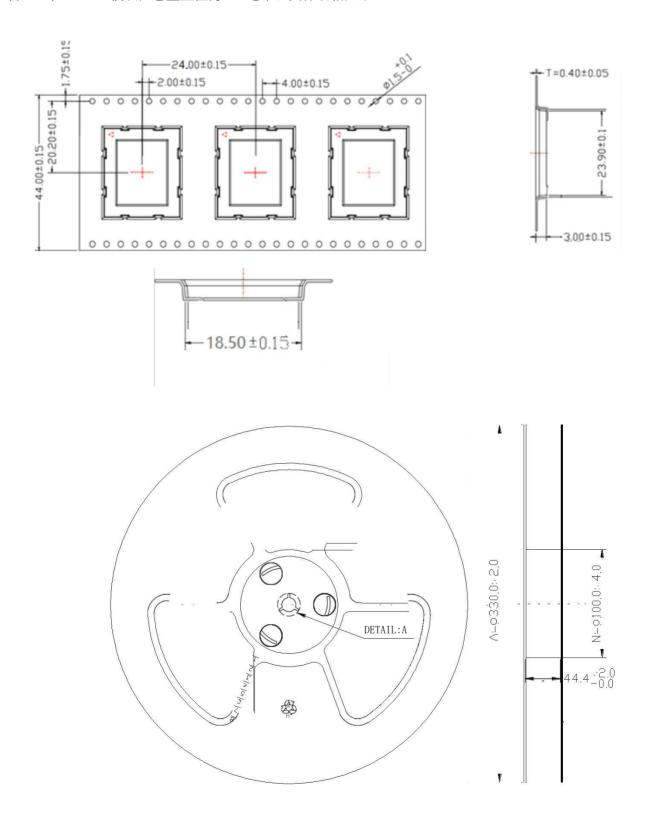

备注

模块的包装无法承受高温烘烤。因此在模块烘烤之前,请移除模块包装。如果只需要短时间的烘烤,请参考 IPC/JEDECJ-STD-033 规范。客户在使用模块时,请参照 IPC-SM-782A规范

7.2. 生产焊接

用印刷刮板在网板上印刷锡膏,使锡膏通过网板开口漏印到 PCB 上,印刷刮板力度需调整合适。为保证模块印膏质量,CFB-801 模块焊盘部分对应的钢网厚度推荐为0.18mm 左右。详细信息请参考**文档** [1]。

推荐的回流焊温度为235~245°C,最高不能超过260°C。为避免模块因反复受热而损坏,建议客户在完成PCB 板第一面的回流焊之后再贴模块。推荐的回流焊曲线温度图如下所示:


回流焊温度曲线

备注

在生产焊接或者其他可能直接接触云程通信模块的过程中,不得使用任何有机溶剂(如酒精,异丙醇,丙酮,三氯乙烯等)擦拭模块标签。

7.3. 包装

CFB-801 模块采用卷带包装,并用真空密封袋将其封装,直到模块准备焊接时才可以打开包装。每个卷带包含700个CFB-801 模块,卷盘直径为330毫米。具体规格如下:

卷盘尺寸(单位:毫米)